Optimizing Age of Information Through Aerial Reconfigurable Intelligent Surfaces: A Deep Reinforcement Learning Approach
نویسندگان
چکیده
We investigate the benefits of integrating unmanned aerial vehicles (UAVs) with reconfigurable intelligent surface (RIS) elements to passively relay information sampled by Internet Things devices (IoTDs) base station (BS). In order maintain freshness relayed information, an optimization problem objective minimizing expected sum Age-of-Information (AoI) is formulated optimize altitude UAV, communication schedule, and phases-shift RIS elements. absence prior knowledge activation pattern IoTDs, proximal policy algorithm developed solve this mixed-integer non-convex problem. Numerical results show that our proposed outperforms all others in terms AoI.
منابع مشابه
Optimizing Chemical Reactions with Deep Reinforcement Learning
Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient explor...
متن کاملAerial Suspended Cargo Delivery through Reinforcement Learning
Cargo-bearing Unmanned aerial vehicles (UAVs) have tremendous potential to assist humans in food, medicine, and supply deliveries. For time-critical cargo delivery tasks, UAVs need to be able to navigate their environments and deliver suspended payloads with bounded load displacement. As a constraint balancing task for joint UAV-suspended load system dynamics, this task poses a challenge. This ...
متن کاملSimulated Transfer Learning Through Deep Reinforcement Learning
This paper encapsulates the use reinforcement learning on raw images provided by a simulation to produce a partially trained network. Before training is continued, this partially trained network is fed different raw images that are more tightly coupled with a richer representation of the non-simulated environment. The use of transfer learning allows for the model to adjust to this richer repres...
متن کاملActive Robotic Mapping through Deep Reinforcement Learning
We propose an approach to learning agents for active robotic mapping, where the goal is to map the environment as quickly as possible. The agent learns to map efficiently in simulated environments by receiving rewards corresponding to how fast it constructs an accurate map. In contrast to prior work, this approach learns an exploration policy based on a user-specified prior over environment con...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Vehicular Technology
سال: 2021
ISSN: ['0018-9545', '1939-9359']
DOI: https://doi.org/10.1109/tvt.2021.3063953